Application of Artificial Neural Networks in Chemical Process Control
نویسندگان
چکیده
An important data-driven model is the artificial neural network. Artificial networks have been widely used in many domains of chemical processes due to its robustness, fault tolerance, self-adaptive capability, and self-learning ability. For process with nonlinearity strong coupling, can control well make up for lack traditional PID technology. As a result, ANN has emerged as significant positive trend control. In this paper, principle, development history, common structure are first outlined. Then role introduced three aspects: improved control, predictive hybrid models. The effect reflected by comparison. Finally, it proposed that be more developed applying deep learning algorithms developing multiple models
منابع مشابه
Artificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملThe Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملApplication of Artificial Neural Network in Landscape Change Process in Gharesou Watershed, Golestan Province
Land use change is certainly the most important factor that affects the conservation of natural ecosystems, resulting the conversion of natural lands such as forests and pastures into agricultural, industrial and urban areas. Despite numerous studies investigating landscape patterns due to land use change, the driving forces of landscape change has been less studied in Iran. In this study, Arti...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Research in Computer Science
سال: 2022
ISSN: ['2581-8260']
DOI: https://doi.org/10.9734/ajrcos/2022/v14i130325